SP8402

September 2005

Very Low Phase Noise Divider by 2[№]

The SP8402 is a very low phase noise divider which divides by powers of two. The S0, S1, S2 data inputs select the division ratio in the range 2¹ to 2⁸. Special circuits techniques have been used to reduce the phase noise considerably below that produced by standard dividers. The data inputs are CMOS or TTL compatible.

The SP8402 is packaged in a 28 pin plastic SO package to be compatible with the SP8400 and SP8401 devices.

FEATURES

- Very low Phase Noise (Typically -155 to 160dBc/Hz at 1kHz offset)
- Supply Voltage 5V

ABSOLUTE MAXIMUM RATINGS

6.5V
20mA
-55°C to +125°C
2.5V p-p

Ordering Information							
SP8402/KG/MF SP8402/KG/MF SP8402/KG/MF	PFP	28 Pin	SOIC*	Τι	ubes ubes ape & I	Reel	
	*Pb	Free Mat	te Tin				
N/C	र्ची	1	28		I/C		
N/C	œ	2	27 🗖	D N	I/C		
N/C	떼	3	26 🗖	D N	I/C		
V _{CC} +5V	뗵	4	25 🗖	D N	I/C		
GND	Щ	5	24 🗖	D N	I/C		
CLOCK INPUT	뗵	6	23 🗖	D N	I/C		
CLOCK INPUT	뗵	7	22	D N	I/C		
CLOCK INPUT	몍	8	21	• c	UTPUT		
CLOCK INPUT	뗵	9	20		UTPUT		
GND	Щ	10		D N	I/C		
V _{CC} +5V	Щ	11	18	D V	CC +5V		
V _{CC} +5V	Щ	12	17		I/C		
N/C	Щ	13	16		2		
S0	Щ	14	15	□ s	51		
						MP28	

Fig.1 Pin connections - top view

Fig.2 Typical single sideband phase noise measured at 768MHz 1

Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 1994-2005, Zarlink Semiconductor Inc. All Rights Reserved.

ELECTRICAL CHARACTERISTICS

Guaranteed over: Supply voltage V_{CC} = +4.75V to +5.25V Temperature T_{amb} = -10°C to +75°C Tested at +4.75V and +5.25V at T_{amb} = +25°C

Characteristic	Pin	Value		Units	Conditions		
	FIII	Min.	Тур.	Max.		Conditions	
Supply current Output voltage swing Input sensitivity 200MHz to 1.5GHz	4, 11, 12, 18 20, 21 7, 8	82 320	92 410	102 140 (-4)	mA mV mV dBm	Output loaded with 300R See Fig.5 p-p @ 1.4GHz input ÷ 256 mode outputs loaded with 330R See Fig.5 RMS Sine wave into 50 Ohms (dBm equivalent) See Fig.3	
Data Inputs Logic high voltage Low low voltage Input current		2.2		0.8 180	V V μA	5V Data input voltage	

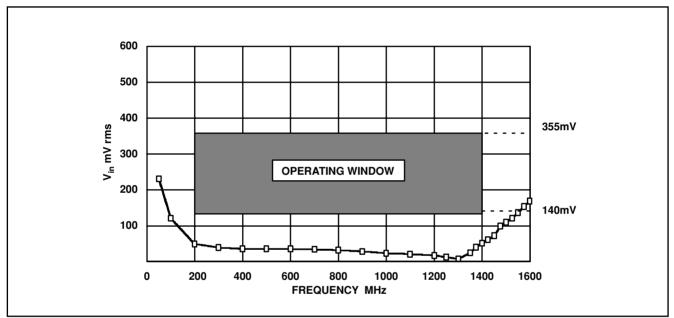


Fig.3 Typical input sensitivity

S0	S1	S2	DIVISION RATIO
L	L	L	2
н	L	L	4
L	н	L	8
н	н	L	16
L	L	н	32
н	L	н	64
L	н	н	128
н	н	н	256

Fig.4 Truth table

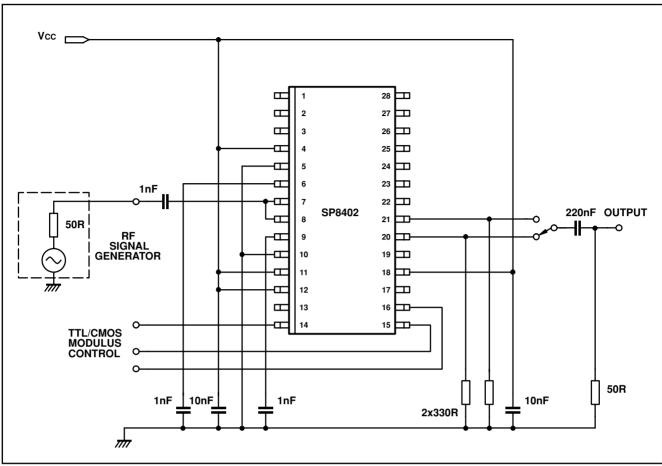


Fig.5 Test circuit

SP8402

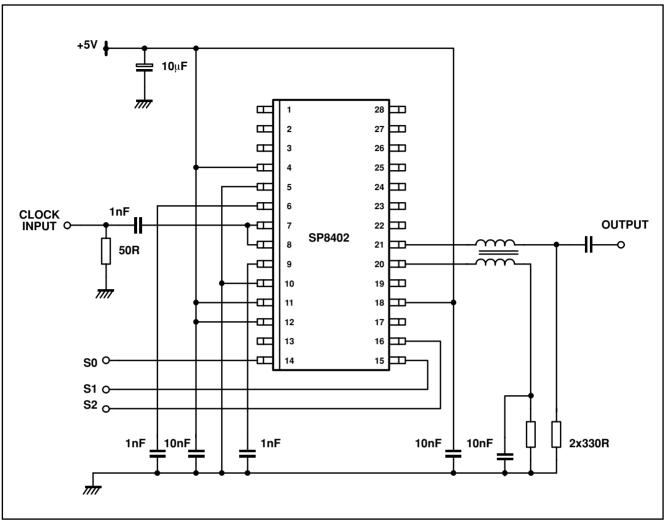
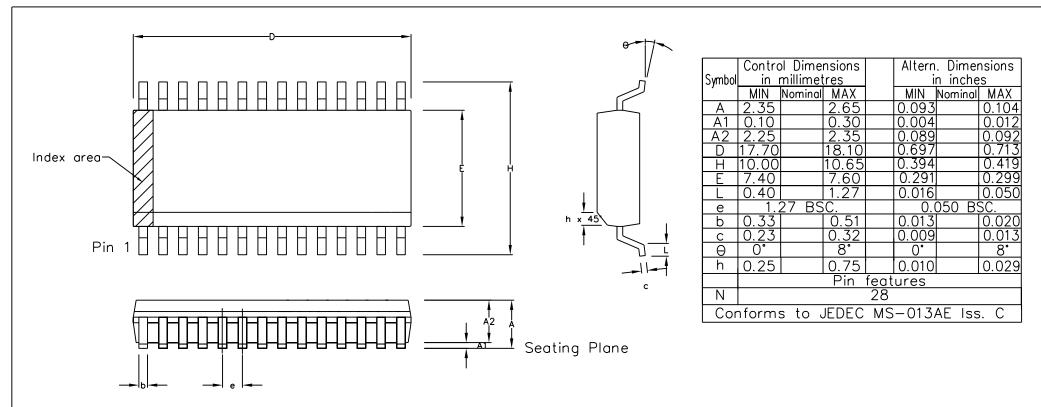



Fig.5 Typical application combining output to increase signal and retain low phase noise

Notes:

- 1. The chamfer on the body is optional. If it not present, a visual index feature, e.g. a dot, must be located within the cross-hatched area.
- 2. Controlling dimension are in millimeters.
- Dimension D do not include mould flash, protrusion or gate burrs. These shall not exceed 0.006" per side.
 Dimension E1 do not include inter-lead flash or protrusion. These shall not exceed 0.010" per side.
- 5. Dimension b does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.004" total in excess of b dimension.

© Zarlink Semiconductor 2002 All rights reserved.			s reserved.			Package Code
ISSUE	1	2	3		Previous package codes	Package Outline for
ACN	6746	201943	213100	SEMICONDUCTOR	MP/S	28 lead SOIC (0.300" Body Width)
DATE	7Apr95	27Feb97	15Jul02	JEMICONDUCTOR	/	
APPRD.						GPD00017

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE